

INNOVATIONS IN PIGGING

Nathan M. Wheldon, PE

A WHOLLY-OWNED MPLX SUBSIDIARY

WELLHEAD TO PROCESSING PLANT

WHY PIG PIPELINES?

- Reduces pipeline pressure drop
- Sweeps valuable natural gas liquids into slug catcher and processing plant for processing and fractionation
- Prevents internal pipeline corrosion
- Prevents paraffin buildup in the pipeline

PIPELINE JUST PIGGED AND FLOWING GAS - NEW PIG READY TO LAUNCH

LINE ACCUMULATING CONDENSED LIQUIDS

PIG REACHES FIRST LOW POINT BEGINS PUSHING LIQUIDS

PIG PUSHES LIQUIDS THRU BYPASS AND RECEIVER AND INTO SLUG CATCHER

CLOSE BYPASS TO PUSH PIG INTO RECEIVER – REMAINING LIQUID IN BYPASS LINE PUSHED INTO SLUG CATCHER BY GAS AND PIG

TIME TO REMOVE PIG FROM RECEIVER-BYPASS, ISOLATE, AND DEPRESSURIZE

Low pressure gathering pipelines flow from well facilities to a compressor station

ENERGYLOGISTICS

PREPARE LAUNCHER FOR NEXT CYCLE – BYPASS, ISOLATE, AND DEPRESSURIZE

READY FOR NEXT PIGGING OPERATION

PIG LAUNCHER AND RECEIVER SITE

VOC PERMIT EMISSIONS LIMITS

- No federal limit
- State limits vary state to state

Calculated using the Real Gas Law

m = PVMw/(RTZ)*VOCwt%

- P = pressure inside the pipe (psia) pound per square inch actual
- V = actual volume of pipe (ft^3)
- m = mass of material (lb)
- M_w = molecular weight of the mixture (lb/lbmol)
- R = universal gas constant (10.73 psia*ft³/lbmol* R)
- T = temperature of mixture(°R)
- Z = compressibility factor at given pressure (unitless)
- VOCwt% = percentage of gas that is VOC on weight basis

HIGH PRESSURE TO LOW PRESSURE JUMPER LINE

VOC EMISSIONS REDUCTION DEVICE

VOC EMISSIONS REDUCTION DEVICE ZEVAC

ZEVAC®

PIG RAMP AWAITING INSTALLATION

U.S. PATENT NUMBER 10012340

PIG RAMP INSTALLED

SHORT BARREL AND LIQUID CONTAINMENT

VOC EMISSION REDUCTION DEVICE PORTABLE FLARE

MARKWEST VOC EMISSION REDUCTIONS

- **0.02% of total volume** estimated emitted from launcher and receiver loading operations prior to enhancements of adding jumper lines where feasible, flares at 7 of 223 locations and pig ramps.
- 84.7% reduction in emissions system wide post enhancement
- 0.003% of total volume is emitted from pigging

BENEFITS OF ENHANCED PIPELINE PIGGING OPERATIONS

- Pig ramp designs are available royalty free
 - Affordable cost of fabrication
 - Ease of installation
 - Reduction liquids at launcher/receiver sites
- Short pig barrels reduce gas volume for potential release
- High/low jumpers prevent gas loss, thus increasing system efficiency
- Portable flares and ZEVAC reduce emissions